سارة أيمن Admin
عدد المساهمات : 5871 العمر : 28 الموقع : -------------- العمل/الترفيه : طالبة فصل : :'( المزاج : disappointed مزاجي اليوم : المهنة : الهواية : أوسمة العضو : نقاط : 31368 السٌّمعَة : 201 تاريخ التسجيل : 06/12/2008
| موضوع: THE LAWS OF THERMODYNAMICS الجمعة ديسمبر 21, 2012 8:24 am | |
| THE FIRST LAW OF THERMODYNAMICS. The physical law known as conservation of energy shows that within a system isolated from all outside factors, the total amount of energy remains the same, though transformations of energy from one form to another take place. The first law of thermodynamics states the same fact in a somewhat different manner. According to the first law of thermodynamics, because the amount of energy in a system remains constant, it is impossible to perform work that results in an energy output greater than the energy input. Thus, it could be said that the conservation of energy law shows that "the glass is half full": energy is never lost. On the hand, the first law of thermodynamics shows that "the glass is half empty": no machine can ever produce more energy than was put into it. Hence, a perpetual motion machine is impossible, because in order to keep a machine running continually, there must be a continual input of energy. THE SECOND LAW OF THERMODYNAMICS. The second law of thermodynamics begins from the fact that the natural flow of heat is always from a high-temperature to a low-temperature reservoir. As a result, no engine can be constructed that simply takes heat from a source and performs an equivalent amount of work: some of the heat will always be lost. In other words, it is impossible to build a perfectly efficient engine. In effect, the second law of thermodynamics compounds the "bad news" delivered by the first law with some even worse news: though it is true that energy is never lost, the energy available for work output will never be as great as the energy put into a system. Linked to the second law is the concept of entropy, the tendency of natural systems toward breakdown, and specifically, the tendency for the energy in a system to be dissipated. "Dissipated" in this context means that the high-and low-temperature reservoirs approach equal temperatures, and as this occurs, entropy increases. THE THIRD LAW OF THERMODYNAMICS. Entropy also plays a part in the third law of thermodynamics, which states that at the temperature of absolute zero, entropy also approaches zero. This might seem to counteract the "worse news" of the second law, but in fact, what the third law shows is that absolute zero is impossible to reach. As stated earlier, Carnot's engine would achieve perfect efficiency if its lowest temperature were the same as absolute zero; but the second law of thermodynamics shows that a perfectly efficient machine is impossible. Relativity theory (which first appeared in 1905, the same year as the third law of thermodynamics) showed that matter can never exceed the speed of light. In the same way, the collective effect of the second and third laws is to prove that absolute zero—the temperature at which molecular motion in all forms of matter theoretically ceases—can never be reached. Copied Source: http://www.scienceclarified.com | |
|